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Abstract. Safety critical interactions increase as the complexity of highly integrated
systems increases. In complex systems and systems-of-systems, these possible
combinations are practically limitless. System “unravelings” have an intelligence of their
own as they expose hidden connections, neutralize redundancies, bypass firewalls, and
exploit chance circumstances for which no system engineer might plan. A software fault in
one module of the system software may coincide with the software fault of an entirely
different module of the system software. This unforeseeable combination can cause
cascading failures within the system.

In this paper, we will offer a new paradigm for system-of-systems development using a
hypothetical missile defense system as a case study. Rather than decompose each system
within the missile defense system in the traditional functional fashion, we will treat the
system-of-systems as a single entity – a system – that is comprised of various abstract
classes. We will identify the common problems and shortcomings that system engineers
address in the design and development of system-of-systems.

The object-oriented paradigm offers a new system-of-systems requirements and design
methodology that can minimize accidental complexity and control essential complexity
through the object-oriented concepts of decentralized control flow, minimal messaging
between classes, implicit case analysis, and information-hiding mechanisms.

The greatest source of system software faults will occur in the integration of the various
systems. With respect to our case study, the hypothetical missile defense systems will be
a complex product that will contain many discrete software packages within each system.
As a rule, these software packages will be developed independent of each other and
programmed in many different languages. Additionally, the hypothetical missile defense
system will include legacy systems that are currently in operation. The means of
integrating these elements and legacy systems are intricate tactical data links that support
the message transfer within the system-of-systems.

While the hypothetical missile defense system will not be a pure object-oriented design,
we can incorporate many of the principles of object-oriented technology to decrease the
complexity of the system-of-systems. We believe that software engineers of system-of-
systems can use this object-oriented paradigm to produce a sound design for the system-
of-systems rather than the traditional federation of systems through a highly coupled
communication medium.
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Introduction. During the past decade, systems-of-systems have exploded into the
battlespace of the joint and coalition warfighters. The acquisition community’s response
to the rabid craving for more accurate information and more lethal functionality has been
a less than stellar hobbling of various legacy systems and ongoing system developments
through tightly coupled and lowly cohesive communication shackles.

While there are many issues with system-of-systems acquisitions, the first issue that we
must address is the requirements definition and allocation issue. Just as the requirements
issue continues to plague single system acquisitions, the requirements issue is much more
complicated in the system-of-systems acquisition. For example, a good number of the
systems that comprise the system-of-systems are legacy systems and currently operate as
stand-alone capabilities in the operational world. We developed these legacy systems
with specific sets of requirements and with specific system functionality in mind.
Additionally, just as we developed the legacy systems, we are developing new systems
that will become a member of a system-of-systems under similar conditions. That is, we
are developing these systems as stand-alone capabilities with specific sets of
requirements and with specific system functionality in mind.

Now comes the desire to slam these various systems together and connect these systems
through some communication medium in the hope of achieving greater functionality (i.e.
the whole will be greater than the sum of its parts). We identify the systems that will
form the system-of-systems, and we set out to bend, fold, spindle, and mutilate these
systems in the fevered hope of producing a functional composition. Oftentimes, it is very
difficult to think about the system-of-systems as a single entity so we mistakenly focus on
modifying individual systems with little deliberation and consideration for the whole.

Our tools for reasoning about a system-of-systems typically consist of little more than a
“sticks and circles” diagram. The “circles” represent the various systems that comprise
the system-of-systems while the “sticks” are means of information transfer, a messaging
protocol, and, perhaps, a translator box to translate the messaging format from one
system to another. Armed with this sophomoric view of the system-of-systems, we
attempt to analyze and describe the system-of-systems through a trivial picture of the
various systems as connected by a convoluted labyrinth of lines.

Traditionally, this methodology failed to achieve an interoperable and integrated system-
of-systems. With each new failure, the system engineers attempted to “tighten up” the
protocol standard; however, the system-of-systems did not achieve the desired degree of
interoperability and integration. The end-state is a collection of systems that are tightly
coupled with a realized protocol standard that only serves to greatly increase the system-
of-systems software complexity.

As we have witnessed time and again, system software critical interactions increase as the
complexity of highly integrated systems increases. In the complex system-of-systems,
these possible combinations are practically limitless. System “unravelings” have an
intelligence of their own as they expose hidden connections, neutralize redundancies,
bypass firewalls, and exploit chance circumstances for which no system engineer might
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plan. [1] A software fault in one module of the system software may coincide with the
software fault of an entirely different module of the system software. This unforeseeable
combination can cause cascading failures within the system.

How do we reason about such a structure so that we have at least a modicum of chance to
realize a functional system-of-systems? Can we extend the existing set of tools that we
use in reasoning about a single system development to the more complex system-of-
systems development? If true, can we use these tools to identify potential sources of
accidental system software complexity?

We propose that applying the Unified Modeling Language (UML) and object oriented
design (OOD) techniques to the system-of-systems requirements analysis offers a new
model for reasoning about complex system-of-systems developments. Rather than
disparate reasoning about the individual systems of a proposed system-of-systems, we
propose that we develop a sound model for reasoning about the system-of-systems as a
single, functional entity.

We will propose this new paradigm through an example of a hypothetical missile defense
system. As depicted below in Figure 1, missile defense systems are most often analyzed
and described by the sticks and circles diagram.

It is difficult to reason about requirements and analyze the system-of-systems with the
hypothetical missile defense system-of-systems sticks and circles view. Although
presented as a single entity, it is challenging to understand the affect of requirements
changes and component limitations in this view. As previously mentioned, our reasoning
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Figure 1. Hypothetical Missile Defense System-of-Systems
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tendency is to focus on the individual systems of the system-of-systems in the hope that
the desired functionality wondrously appears.

Unfortunately, magic and marvel are not tools that are abundantly available to system
developers. Their fervent yet futile hopes for integrated systems and desired
functionality too often fall shattered on the road of broken acquisition dreams.
Frustration and antipathy are the frequent products of the most system-of-systems
development.

Let us propose another view of the hypothetical missile defense system in which we
apply UML and OOD techniques. We will develop a class diagram with abstract classes
for the major components of the system-of-systems. We will reason about the class
diagram in our attempt to develop subclasses to which we can begin to allocate
requirements and analyze system capabilities and limitations. Additionally, we will
identify message requirements and message flow in our attempt to reduce coupling in the
system-of-systems by developing requirements for simplified interfaces between the
components. Finally, we will propose a reassignment of methods to increase the
cohesion of the components.

The first step is to develop a class diagram of abstract classes. For the hypothetical
missile defense system-of-systems, we will use the following five classes:

• Threat Missile: The threat missile class is the enemy missile that contains
warhead of mass destruction: nuclear, chemical, or high explosive munitions. The
adversary will launch the threat missile within the confines of his state. The missile will
climb into the exo-atmospheric region that constitutes up to 80% of the missile flight.
The missile will re-enter the atmosphere over our forces or defended assets at which time
it will impact at its aim point.

• Sensor: The sensor class is the object that detects the threat missile. Sensor is an
abstraction of two subclasses: infrared class and radar class.

• BM/C2: The Battle Manager/Command and Control (BM/C2) class processes
track data from the sensor. The BM/C2 monitors the threat missile, develops firing
solution to negate the threat missile, and directs a weapon to launch its interceptor with
the BM/C2-provided firing solution. The BM/C2 class is an abstraction for all system
echelons of battle management.

• Weapon: The weapon class develops firing solutions, calculates the probability
of kill, and implements the BM/C2 authorization to engage the threat missile.

• Interceptor: The interceptor class is the engagement mechanism that negates the
threat missile. The interceptor class is the abstraction for both directed and kinetic
energy intercepts of the threat missile.
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Given these classes and associated definitions, we constructed a class diagram of the
hypothetical missile defense system as depicted below in Figure 2.

Note that the message requirements in the above class diagram are very specific as
compared to the single, large network interface of the sticks and circles diagram.
Through this class diagram, we can easily determine the messaging requirements of each
class. For example, the sensor class wants to determine the attributes of the threat missile

Figure 2. Class Diagram of Hypothetical Missile Defense System-of-Systems
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class. The BM/C2 class wants formed track data from the sensor class. The weapon
class waits for control data from the BM/C2 class. The interceptor class waits for the
interceptor release command from the weapon class.

From this class diagram, we can begin to define abstract interfaces between the classes.
Rather than the largely unmanageable and complex network interface of the sticks and
circles diagram, we can begin to develop very specific interface requirements from the
class diagram approach.

Let us add detail to the threat missile class as this is the point of reference for our
hypothetical missile defense system. We can develop subclasses (i.e. short range,
intermediate range, and long range threat missiles) of the threat missile class as depicted
below in Figure 3.

Figure 3. Subclasses of Threat Missile Class*

*Note: All attribute values listed in subclasses are fictitious and
do not represent real threat missile data.
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Mass : real < 1000 Kg
Altitude : real < 100 Km
Distance : real < 1000 Km
Burn Intensity : real
Radar Cross Section : real
Burn Time : time
Launch Point
Aim Point

INTERMEDIATE RANGE

Velocity : real >1 Km/s, < 2 Km/s
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In our definition of the subclasses, we have assigned attribute values. In our example, we
have assigned fictitious data so that our example remains out of the classified regime.
These subclasses with the assigned attributes will form the basis for our reasoning about
the hypothetical missile defense system.

The sensor class is responsible for detecting the threat missile class so let us develop
subclasses that can detect the threat missile subclasses that we have defined. The
subclasses for the sensor class are depicted below in Figure 4.

GROUND SENSOR

Sensing Range : real < 2000 Km
Field of View : real
Wavelength : real
Position
Elevation

GetTrackData()
SendTrackData()

SPACE SENSOR

Sensing Range : real < 3000 Km
Field of View : real
Wavelength : real
Position
Elevation

GetTrackData()
SendTrackData()

SENSOR

Sensing Range
Field of View
Wavelength
Position
Elevation

GetTrackData()
SendTrackData()

SEA-BASED SENSOR

Sensing Range : real < 1000 Km
Field of View : real
Wavelength : real
Position
Elevation

GetTrackData()
SendTrackData()

AIRBORNE SENSOR

Sensing Range : real < 1000 Km
Field of View : real
Wavelength : real
Position
Elevation

GetTrackData()
SendTrackData()

Figure 4. Subclasses of Sensor Class*

*Note: All attribute values listed in subclasses are fictitious and
do not represent real sensor data.



Proc. Monterey Workshop: Radical Innovations of Software and Systems Eng. in the
Future, US Army Research Office (Venice, Italy, Oct. 2002).

8

By considering the subclasses of the threat missile class, we can design a sensor
framework for which we can attain overlapping coverage of our sensor subclasses to
greatly increase our opportunities for the detection of the threat missiles. Additionally,
we can develop additional requirements to bolster our detection capability. For example,
after considering the threat missile subclasses for a potential adversary, we may desire to
increase the sensing range of the Sea-Based Sensor to extend our coverage into an
adversary’s territory into which a Ground Sensor solution is not feasible. We can now
levy this requirement change on the Sea-Based Sensor subclass.

After we have detected a Threat Missile object, then we must develop a firing solution
and engage the threat missile. As depicted in Figure 2, the BM/C2 class handles these
functions and several other important functions. While these functions are related, the
incorporation of these methods in a single class lessens the cohesion of the class. Rather
than a single BM/C2 class, we might develop the BM/C2 class as an aggregate of several
classes as depicted below in Figure 5.

Figure 5. BM/C2 Class as an Aggregate
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As depicted in Figure 2, we separated the methods for developing and realizing a firing
solution from the BM/C2 class and assigned these methods to the Weapon class. These
methods are similar in function so the cohesion of this class is high. This separation is
important as the realizations of the BM/C2 class and the Weapon class may physically
reside on different hardware platforms. So, in addition to increasing the cohesion, we
reduce the coupling by substituting more interfaces that are small and better defined for
the larger interface required for data flow and messaging of the sticks and circles
architecture depicted in Figure 2. The Weapon class and subclasses are show below in
Figure 6.

WEAPON

Min_Range

DevelopFiringSolution()
CalculateMin_Prob_Kill()
FireInterceptor()
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FireInterceptor()

AIRBORNE_WEAPON
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Max_Range
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DevelopFiring Solution()
CalculateMin_Prob_Kill()
FireInterceptor()

TACTICAL_GB_WEAPON

Min_Range
Max_Range
Location
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FireInterceptor()
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Figure 6. Subclasses of Weapon Class
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Finally, we consider the Interceptor class. Given the attributes of the Threat Missile class
as well as potential deployment of our hypothetical missile defense system, we can
develop the attributes and associated requirements for the Interceptor class. For example,
the velocity of the Intermediate Range subclass of the Threat Missile class ranges
between 1 Km/second and 2 Km/second and the distance of this same subclass ranges
from 1000 Km to 2000 Km. As we consider the minimum altitude in which we must
negate the threat missile to ensure minimal ground effects of the resulting debris, we can
determine minimum velocities for our three subclasses of the Interceptor class. These
subclasses are depicted below in Figure 7.

As we reason about the classes and subclasses of our hypothetical missile defense system,
we can see that we will develop many interfaces in the realization that replaces the single,
large network interface of the sticks and circles diagram of Figure 2. This is important to
us in that we can manage a larger number of small, well-defined interfaces; however, the
single, large network interface is much too unwieldy and complicated to manage
effectively. We can reduce the messaging requirements of the large network interface to
only that which is necessary for realizing the subclasses of our system-of-systems.
Because the interface requirements are now manageable and known to all the system

INTERCEPTOR

Min_Range:=TBD
Min_Velocity:=TBD
Min_Prob_Kill:=0.80

Discriminate()
ReceiveUpdates()
LockInterceptPoint()

HIT_TO_KILL

Min_Range:=TBD
Max_Range:=TBD
Min_Velocity:=TBD
Max_Velocity:=TBD
Min_Prob_Kill:=0.80

Discriminate()
ReceiveUpdates()
Manuever()
LockInterceptPoint()

DETONATION_ON_IMPACT

Min_Range:=TBD
Max_Range:=TBD
Min_ Velocity:=TBD
Max_Velocity:=TBD
Min_Prob_Kill:=0.80

Discriminate()
ReceiveUpdates()
Manuever()
LockInterceptPoint()
Detonate()

LASER

Min_Range:=TBD
Max_Range:=
Min_Velocity:=TBD
Min_Prob_Kill:=0.80

Discriminate()
ReceiveUpdates()
LockInterceptPoint()
Lase()

Figure 7. Subclasses of Interceptor Class
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developers, we have enhanced our ability to effectively integrate these systems into a
system-of-systems.

As we define the class and subclass attributes, the concept of inheritance becomes
important in that the allocation of requirements through attributes and methods ensures
consistency in the realization of the subclasses in our developments. Each system
developer will know the minimum set of requirements that must be implemented and
each developer knows what requirements the other developers will realize.

By careful assignment of methods to each class, we can avoid the creation of the so-
called “god class” that performs the bulk of the work within the system-of-systems. [2]
Typically, we overload the battle manager function with the vast majority of the work.
More often than not, the battle manager software contains many dissimilar tasks and
requires a complex messaging network. Rather than primarily exchanging control or
triggering messages among several classes, the typical battle manager requires the
continual transport of great amounts of data that results in more complex rules of
messaging and bandwidth requirements. By employing the aforementioned UML and
OOD techniques, we can reassign methods to other classes in which these methods are
better suited.

For example, consider the discriminate method listed in the BM/C2 class in Figure 2.
This requires that the Sensor class send a great deal of data to the BM/C2 class. Perhaps
we might reason that the Sensor class should contain the discriminate method and send a
much smaller, refined track file to the BM/C2 class for prosecution. This would greatly
reduce the messaging requirements and greatly simplify the interface between the Sensor
class and the BM/C2 class.

As we reason about the classes and subclasses of the hypothetical missile defense system,
we find that we can modify the methods to maximize the benefits of data hiding within
the appropriate class. In the large sticks and circles network of Figure 1, nearly all data is
public by definition of the single, large interface to each system. By developing
appropriate methods for each class, we can begin to hide data within its class.

For example, consider the development of a firing solution for a given threat missile. In
the large sticks and circles network, the firing solution uses public data that is visible to
all other systems. Because the data is public and the network connects each system to all
other systems, it is difficult for software designers to understand the impact on system
behavior as it is not readily apparent what system functionality is dependent on the public
data.

On the other hand, we can determine the data requirements for the development of the
firing solution in the Weapon class in Figure 6, and understand that the software
developers should hide that data within the Weapon class. While this data hiding may be
more difficult in procedural software, the public data issue is more readily apparent in the
class views of the system-of-systems than in the large sticks and circles network diagram.
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Summary. By applying UML and OOD techniques to the system-of-systems
development, we can glean a great deal more insight into the system-of-systems
requirements definition and allocation issues than the traditional sticks and circles
diagrams so often used to depict these large, complex systems. By developing a class
diagram with abstract classes for the major components of the system-of-systems, we can
reason about the class diagram in our attempt to develop subclasses to which we can
begin to allocate requirements and analyze system capabilities and limitations.
Additionally, we can identify message requirements and message flow in our attempt to
reduce coupling in the system-of-systems by developing requirements for simplified
interfaces between the components. Finally, we can reassign methods to increase the
cohesion of the components and we can hide data within a class to minimize the negative
impacts of future modifications to either the system functionality or the data.

These aforementioned benefits of applying these UML and OOD techniques cannot be
derived from the traditional views of system-of-systems designs. While software
designers encounter other problems in system-of-systems designs, we believe that
software developers can more easily reason about the system-of-systems requirements
and associated allocation, thereby improving the system-of-systems designs by
employing the techniques previously outlined in this discussion.
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